Generate Strong Name Key For Dll

 admin

Type file path in this tag assembly:AssemblyKeyFile@'E: hemant practice HP bin Debug HP.snk') Build application, finally your strong name created for your DLL. Created class library path E: hemant practice HP; Open command prompt go to Dll folder path. Type sn -k HP.snk; This create HP.snk file in E: hemant practice HP bin Debug folder. Jul 06, 2018 Strong Name Tool is automatically installed with Visual Studio. Follow the steps below to get values from your assembly file: Open Visual Studio Command Prompt (Start Visual Studio Visual Studio Tools Developer Command Prompt) Run the command below. It will display both public key token and public key. Visual Studio Strong-Name key file. SNK is a file extension for a key file used with Microsoft software. https://bearnew.weebly.com/blog/download-sims-4-mac-kickass. SNK stands for Strong Name Key file. SNK files are used to uniquely identify components of the.NET Framework using Public-Key encryption.SNK files contain the Strong Key used to uniquely identify components such as DLL files. The common language runtime verifies the strong name signature when the assembly is placed in the global assembly cache. When binding by strong name at run time, the common language runtime compares the key stored in Assembly B's manifest with the key used to generate the strong name for Assembly A.

-->

A strong name signature is an identity mechanism in the .NET Framework for identifying assemblies. It is a public-key digital signature that is typically used to verify the integrity of data being passed from an originator (signer) to a recipient (verifier). This signature is used as a unique identity for an assembly and ensures that references to the assembly are not ambiguous. The assembly is signed as part of the build process and then verified when it is loaded.

Strong name signatures help prevent malicious parties from tampering with an assembly and then re-signing the assembly with the original signer’s key. However, strong name keys don’t contain any reliable information about the publisher, nor do they contain a certificate hierarchy. A strong name signature does not guarantee the trustworthiness of the person who signed the assembly or indicate whether that person was a legitimate owner of the key; it indicates only that the owner of the key signed the assembly. Therefore, we do not recommend using a strong name signature as a security validator for trusting third-party code. Microsoft Authenticode is the recommended way to authenticate code.

Limitations of conventional strong names

The strong naming technology used in versions before the .NET Framework 4.5 has the following shortcomings:

  • Keys are constantly under attack, and improved techniques and hardware make it easier to infer a private key from a public key. To guard against attacks, larger keys are necessary. .NET Framework versions before the .NET Framework 4.5 provide the ability to sign with any size key (the default size is 1024 bits), but signing an assembly with a new key breaks all binaries that reference the older identity of the assembly. Therefore, it is extremely difficult to upgrade the size of a signing key if you want to maintain compatibility.

  • Strong name signing supports only the SHA-1 algorithm. SHA-1 has recently been found to be inadequate for secure hashing applications. Therefore, a stronger algorithm (SHA-256 or greater) is necessary. It is possible that SHA-1 will lose its FIPS-compliant standing, which would present problems for those who choose to use only FIPS-compliant software and algorithms.

Advantages of enhanced strong names

The main advantages of enhanced strong names are compatibility with pre-existing strong names and the ability to claim that one identity is equivalent to another:

  • Developers who have pre-existing signed assemblies can migrate their identities to the SHA-2 algorithms while maintaining compatibility with assemblies that reference the old identities.

  • Developers who create new assemblies and are not concerned with pre-existing strong name signatures can use the more secure SHA-2 algorithms and sign the assemblies as they always have.

Use enhanced strong names

Strong name keys consist of a signature key and an identity key. The assembly is signed with the signature key and is identified by the identity key. Prior to the .NET Framework 4.5, these two keys were identical. Starting with the .NET Framework 4.5, the identity key remains the same as in earlier .NET Framework versions, but the signature key is enhanced with a stronger hash algorithm. In addition, the signature key is signed with the identity key to create a counter-signature.

The AssemblySignatureKeyAttribute attribute enables the assembly metadata to use the pre-existing public key for assembly identity, which allows old assembly references to continue to work. The AssemblySignatureKeyAttribute attribute uses the counter-signature to ensure that the owner of the new signature key is also the owner of the old identity key.

Sign with SHA-2, without key migration

Run the following commands from a command prompt to sign an assembly without migrating a strong name signature:

  1. Generate the new identity key (if necessary).

  2. Extract the identity public key, and specify that a SHA-2 algorithm should be used when signing with this key.

  3. Delay-sign the assembly with the identity public key file.

  4. Re-sign the assembly with the full identity key pair.

Sign with SHA-2, with key migration

Run the following commands from a command prompt to sign an assembly with a migrated strong name signature.

  1. Generate an identity and signature key pair (if necessary).

  2. Extract the signature public key, and specify that a SHA-2 algorithm should be used when signing with this key.

  3. Extract the identity public key, which determines the hash algorithm that generates a counter-signature.

  4. Generate the parameters for a AssemblySignatureKeyAttribute attribute, and attach the attribute to the assembly.

    This produces output similar to the following.

    This output can then be transformed into an AssemblySignatureKeyAttribute.

  5. Delay-sign the assembly with the identity public key.

  6. Fully sign the assembly with the signature key pair.

See also

Generate Strong Name Key For Dll Download

-->

Generate Strong Name Key For Dll Free

A strong name consists of the assembly's identity—its simple text name, version number, and culture information (if provided)—plus a public key and a digital signature. It is generated from an assembly file using the corresponding private key. (The assembly file contains the assembly manifest, which contains the names and hashes of all the files that make up the assembly.)

Warning

Do not rely on strong names for security. They provide a unique identity only.

A strong-named assembly can only use types from other strong-named assemblies. Otherwise, the integrity of the strong-named assembly would be compromised.

Note

Although .NET Core supports strong-named assemblies, and all assemblies in the .NET Core library are signed, the majority of third-party assemblies do not need strong names. For more information, see Strong Name Signing on GitHub.

Strong name scenario

The following scenario outlines the process of signing an assembly with a strong name and later referencing it by that name.

  1. Assembly A is created with a strong name using one of the following methods:

    • Using a development environment that supports creating strong names, such as Visual Studio.

    • Creating a cryptographic key pair using the Strong Name tool (Sn.exe) and assigning that key pair to the assembly using either a command-line compiler or the Assembly Linker (Al.exe). The Windows SDK provides both Sn.exe and Al.exe.

  2. The development environment or tool signs the hash of the file containing the assembly's manifest with the developer's private key. This digital signature is stored in the portable executable (PE) file that contains Assembly A's manifest. Windows 10 pro key generator 2018.

  3. Assembly B is a consumer of Assembly A. The reference section of Assembly B's manifest includes a token that represents Assembly A's public key. A token is a portion of the full public key and is used rather than the key itself to save space.

  4. The common language runtime verifies the strong name signature when the assembly is placed in the global assembly cache. When binding by strong name at run time, the common language runtime compares the key stored in Assembly B's manifest with the key used to generate the strong name for Assembly A. If the .NET Framework security checks pass and the bind succeeds, Assembly B has a guarantee that Assembly A's bits have not been tampered with and that these bits actually come from the developers of Assembly A.

Note

Generate Strong Name Key For Dll 1

This scenario doesn't address trust issues. Assemblies can carry full Microsoft Authenticode signatures in addition to a strong name. Authenticode signatures include a certificate that establishes trust. It's important to note that strong names don't require code to be signed in this way. Strong names only provide a unique identity.

Bypass signature verification of trusted assemblies

Starting with the .NET Framework 3.5 Service Pack 1, strong-name signatures are not validated when an assembly is loaded into a full-trust application domain, such as the default application domain for the MyComputer zone. This is referred to as the strong-name bypass feature. In a full-trust environment, demands for StrongNameIdentityPermission always succeed for signed, full-trust assemblies, regardless of their signature. The strong-name bypass feature avoids the unnecessary overhead of strong-name signature verification of full-trust assemblies in this situation, allowing the assemblies to load faster.

Generate Strong Name Key For Dll 2

The bypass feature applies to any assembly that is signed with a strong name and that has the following characteristics:

  • Fully trusted without StrongName evidence (for example, has MyComputer zone evidence).

  • Loaded into a fully trusted AppDomain.

  • Loaded from a location under the ApplicationBase property of that AppDomain.

  • Not delay-signed.

This feature can be disabled for individual applications or for a computer. See How to: Disable the strong-name bypass feature.

Related topics

TitleDescription
How to: Create a public-private key pairDescribes how to create a cryptographic key pair for signing an assembly.
How to: Sign an assembly with a strong nameDescribes how to create a strong-named assembly.
Enhanced strong namingDescribes enhancements to strong-names in the .NET Framework 4.5.
How to: Reference a strong-named assemblyDescribes how to reference types or resources in a strong-named assembly at compile time or run time.
How to: Disable the strong-name bypass featureDescribes how to disable the feature that bypasses the validation of strong-name signatures. This feature can be disabled for all or for specific applications.
Create assembliesProvides an overview of single-file and multifile assemblies.
How to delay sign an assembly in Visual StudioExplains how to sign an assembly with a strong name after the assembly has been created.
Sn.exe (Strong Name tool)Describes the tool included in the .NET Framework that helps create assemblies with strong names. This tool provides options for key management, signature generation, and signature verification.
Al.exe (Assembly linker)Describes the tool included in the .NET Framework that generates a file that has an assembly manifest from modules or resource files.